fischer
hammerset anchor EA PLUS
The cost-efficient and certified hammerset anchor for simple installation
Functionality

- Position the hammerset anchor in the drill hole and drive it in flush to the surface of the base material by using a hammer.
- The fischer setting tool EA-ST PLUS is then used to expand the sleeve against the drill hole wall by driving in the internal pin.
- The setting tool must sit on the edge of the anchor to ensure the correct expansion.

The metric thread of the EA PLUS allows the usage of all standard screws and therefore offers high flexibility.

Your advantages at a glance

- The ETA-certified (Option 7) hammerset anchor EA PLUS offers a high degree of safety in non-cracked concrete.
- The EA-ST PLUS setting tool guarantees a simple and quick installation.
- The EA PLUS has an ETA assessment for redundant non-structural systems. This ensures a safe installation of pipe routes or cable trays.
- The EA PLUS ETA (for redundant systems) offers the approval for fire resistance up to R120.

Installation

1. Position the anchor in the drill hole.
2. Drive it flush to the surface of the base material.
3. Use the setting tool to expand the sleeve.
4. Sit the setting tool on the edge of the anchor.
5. Drive in the internal pin.

Approvals

* only valid for ETA-19/0169 for redundant systems

Applications

- Light pipeline routes
- Cable routes

Building material

The hammerset anchor with internal thread enables an easy pre-positioned installation.

The large range of hammerset anchors from diameter 6 to 12 offers a wide range of thread sizes for different applications.
Applications, assortment and loads

Hammerset anchor EA PLUS

<table>
<thead>
<tr>
<th>Item</th>
<th>Art.-No.</th>
<th>Approval</th>
<th>Drill diameter</th>
<th>Min. drill hole depth</th>
<th>Anchor length</th>
<th>Maximum installation torque</th>
<th>Thread</th>
<th>Setting tool</th>
<th>Sales unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA PLUS M6x25</td>
<td>551788</td>
<td>ETA</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>4</td>
<td>M6</td>
<td>EA-ST PLUS M6x25</td>
<td>100</td>
</tr>
<tr>
<td>EA PLUS M8x30</td>
<td>551789</td>
<td>ETA</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>8</td>
<td>M8</td>
<td>EA-ST PLUS M8x30</td>
<td>100</td>
</tr>
<tr>
<td>EA PLUS M10x40</td>
<td>551790</td>
<td>ETA</td>
<td>12</td>
<td>40</td>
<td>40</td>
<td>15</td>
<td>M10</td>
<td>EA-ST PLUS M10x40</td>
<td>50</td>
</tr>
<tr>
<td>EA PLUS M12x50</td>
<td>551791</td>
<td>ETA</td>
<td>15</td>
<td>50.5</td>
<td>50</td>
<td>35</td>
<td>M12</td>
<td>EA-ST PLUS M12x50</td>
<td>50</td>
</tr>
<tr>
<td>Setting tool EA-ST PLUS M6x25</td>
<td>551792</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Setting tool EA-ST PLUS M8x30</td>
<td>551793</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Setting tool EA-ST PLUS M10x40</td>
<td>551794</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Setting tool EA-ST PLUS M12x50</td>
<td>551795</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Highest permissible loads for a single anchor for multiple use for non-structural applications in cracked and non-cracked concrete C20/25 (2) (3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Screw steel property/ surface</th>
<th>Min. member thickness</th>
<th>Effective anchorage depth</th>
<th>Maximum installation torque</th>
<th>Permissible tension load</th>
<th>Minimum spacing</th>
<th>Minimum edge distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA PLUS M6x25</td>
<td>C8C</td>
<td>100</td>
<td>25</td>
<td>4</td>
<td>0.8</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>EA PLUS M8x30</td>
<td>C8C</td>
<td>100</td>
<td>30</td>
<td>8</td>
<td>0.8</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>EA PLUS M10x40</td>
<td>C8C</td>
<td>120</td>
<td>40</td>
<td>15</td>
<td>1.6</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>EA PLUS M12x50</td>
<td>C8C</td>
<td>140</td>
<td>50</td>
<td>35</td>
<td>1.2</td>
<td>150</td>
<td>175</td>
</tr>
</tbody>
</table>

For the design the complete assessment ETA-19/0168 has to be considered. 1) The partial safety factors for material resistance as regulated in the ETA-19/0168 of 05.04.2019 as well as a partial safety factor for load actions of \(\gamma_L = 1.4 \) are considered. As an single anchor counts e.g. an anchor with a spacing \(s \geq 3 \cdot h_{ef} \) and an edge distance \(c \geq 1.5 \cdot h_{ef} \). Accurate data see ETA.

2) Cold formed steel grade C8C in accordance with table 2 in EN 10263-2 or cold formed steel grade 1008 in accordance with table 3 in ASTM A578. Galvanised.

3) Drill method hammer drilling.

4) For combinations of tensile loads, shear loads as well as bending moments see ETA.

5) Minimum possible axial spacings resp. edge distances while increasing the member thickness. The combination of minimum axial spacing and minimum edge distance with the minimum member thickness is not possible. Exact data see ETA.

6) The given loads refer to the European Technical Assessment ETA. Design of the loads according ETAG 001, Annex C, Method A.

Permissible loads of a single anchor in non-cracked normal concrete (concrete compression zone) of strength class C20/25 (2) (3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Screw steel property/ surface</th>
<th>Min. member thickness</th>
<th>Effective anchorage depth</th>
<th>Maximum installation torque</th>
<th>Permissible tension load</th>
<th>Permissible shear load</th>
<th>Minimum spacing</th>
<th>Minimum edge distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA PLUS M6x30</td>
<td>C8C</td>
<td>100</td>
<td>25</td>
<td>4</td>
<td>1.7</td>
<td>2.6</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>EA PLUS M10x40</td>
<td>C8C</td>
<td>120</td>
<td>40</td>
<td>15</td>
<td>2.8</td>
<td>3.3</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>EA PLUS M12x50</td>
<td>C8C</td>
<td>140</td>
<td>50</td>
<td>35</td>
<td>4.0</td>
<td>3.6</td>
<td>150</td>
<td>175</td>
</tr>
</tbody>
</table>

For the design the complete assessment ETA-19/0168 has to be considered. 1) The partial safety factors for material resistance as regulated in the ETA-19/0168 of 05.04.2019 as well as a partial safety factor for load actions of \(\gamma_L = 1.4 \) are considered. As an single anchor counts e.g. an anchor with a spacing \(s \geq 3 \cdot h_{ef} \) and an edge distance \(c \geq 1.5 \cdot h_{ef} \). Accurate data see ETA.

2) Cold formed steel grade C8C in accordance with table 2 in EN 10263-2 or cold formed steel grade 1008 in accordance with table 3 in ASTM A578. Galvanised.

3) Drill method hammer drilling.

4) For combinations of tensile loads, shear loads or shear loads with lever arm (bending moments) as well as reduced edge distances or spacings (anchor group) see ETA.

5) Minimum possible axial spacings resp. edge distances while reducing the permissible load.

6) The given loads refer to the European Technical Assessment ETA. Design of the loads according ETAG 001, Annex C, Method A.
Our service to you

We are available to you at any time as a reliable partner to offer technical support and advice:
- Our products range from chemical resin systems to steel anchors through to nylon anchors.
- Competence and innovation through own research, development and production.
- Global presence and active sales service in over 100 countries.
- Qualified technical consulting for economical and compliant fastening solutions. Also on-site at the construction site if requested.
- Training sessions, some with accreditation, at your premises or at the fischer academy.
- Design and construction software for demanding applications.

This is what fischer stands for

- FIXING SYSTEMS
- AUTOMOTIVE SYSTEMS
- FISCHERTECHNIK
- CONSULTING
- LNT AUTOMATION

See the extensive main catalogue or visit our website at www.fischer-international.com for information about the complete fischer range.